Abstract
Starting from our recently published implementation of nonadiabatic molecular dynamics (NAMD) on graphics processing units (GPUs), we explore further approaches to accelerate ab initio NAMD calculations at the time-dependent density functional theory (TDDFT) level of theory. We employ (1) the simplified TDDFT schemes of Grimme et al. and (2) the Hammes-Schiffer−Tully approach to obtain nonadiabatic couplings from finite-difference calculations. The resulting scheme delivers an accurate physical picture while virtually eliminating the two computationally most demanding steps of the algorithm. Combined with our GPU-based integral routines for SCF, TDDFT, and TDDFT derivative calculations, NAMD simulations of systems of a few hundreds of atoms at a reasonable time scale become accessible on a single compute node. To demonstrate this and to present a first, illustrative example, we perform TDDFT/MM-NAMD simulations of the rhodopsin protein.
Dokumententyp: | Zeitschriftenartikel |
---|---|
EU Funded Grant Agreement Number: | 765739 |
EU-Projekte: | Horizon 2020 > Marie Skłodowska Curie Actions > Marie Skłodowska-Curie Innovative Training Networks > 765739: COSINE - Training network for COmputational Spectroscopy In Natural sciences and Engineering |
Publikationsform: | Publisher's Version |
Keywords: | Time dependant density functional theory; Energy; Nonadiabatic coupling; Chemical calculations; Computational chemistry |
Fakultät: | Chemie und Pharmazie > Department Chemie |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 540 Chemie |
URN: | urn:nbn:de:bvb:19-epub-72209-0 |
ISSN: | 1948-7185 |
Sprache: | Englisch |
Dokumenten ID: | 72209 |
Datum der Veröffentlichung auf Open Access LMU: | 22. Mai 2020, 06:50 |
Letzte Änderungen: | 23. Dez. 2020, 13:41 |