ORCID: https://orcid.org/0000-0002-4746-2822; Schneider, Christina
ORCID: https://orcid.org/0000-0002-7110-1744; Crisp, Antony
ORCID: https://orcid.org/0000-0001-7173-4376 and Carell, Thomas
ORCID: https://orcid.org/0000-0001-7898-2831
(12. December 2018):
Non-canonical nucleosides and chemistry of the emergence of life.
In: Nature Communications, 5174
[PDF, 1MB]

Abstract
Prebiotic chemistry, driven by changing environmental parameters provides canonical and a multitude of non-canonical nucleosides. This suggests that Watson-Crick base pairs were selected from a diverse pool of nucleosides in a pre-Darwinian chemical evolution process.
Item Type: | Journal article |
---|---|
EU Funded Grant Agreement Number: | 741912 |
EU Projects: | Horizon 2020 > ERC Grants > ERC Advanced Grant > ERC Grant 741912: EPiR - The Chemical Basis of RNA Epigenetics |
Form of publication: | Publisher's Version |
Keywords: | prebiotic chemistry; early earth; nucleosides |
Faculties: | Chemistry and Pharmacy > Department of Chemistry |
Research Centers: | Center for Integrated Protein Science Munich (CIPSM) |
Subjects: | 500 Science > 540 Chemistry |
URN: | urn:nbn:de:bvb:19-epub-72518-2 |
Language: | English |
Item ID: | 72518 |
Date Deposited: | 17. Jun 2020, 07:37 |
Last Modified: | 04. Nov 2020, 13:53 |
References: | 1. Weiss, M. C. et al. The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 1, 16116 (2016). 2. Woese, C. R. & Fox, G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl Acad. Sci. USA 74, 5088–5090 (1977). 3. Gilbert, W. Origin of life: the RNA world. Nature 319, 618 (1986). 4. Carell, T. et al. Structure and function of noncanonical nucleobases. Angew. Chem. Int. Ed. 51, 7110–7131 (2012). 5. Becker, S. et al. Wet-dry cycles enable the parallel origin of canonical and non-canonical nucleosides by continuous synthesis. Nat. Commun. 9, 163 (2018). 6. Wächtershäuser, G. Before enzymes and templates: theory of surface metabolism. Microbiol. Rev. 52, 452–484 (1988). 7. Mees, A. et al. Crystal structure of a photolyase bound to a CPD-like DNA lesion after in situ repair. Science 306, 1789–1793 (2004). 8. Airapetian, V. S., Glocer, A., Gronoff, G., Hébrard, E. & Danchi, W. Prebiotic chemistry and atmospheric warming of early Earth by an active young Sun. Nat. Geosci. 9, 452 (2016). 9. Benner, S. A., Kim, H.-J. & Biondi, E. in Prebiotic Chemistry and Chemical Evolution of Nucleic Acids 31–83 (Springer, Berlin, 2018). 10. Becker, S. et al. A high-yielding, strictly regioselective prebiotic purine nucleoside formation pathway. Science 352, 833–836 (2016). 11. Schneider, C. et al. Noncanonical RNA nucleosides as molecular fossils of an early Earth—Generation by prebiotic methylations and carbamoylations. Angew. Chem. Int. Ed. 57, 5943–5946 (2018). 12. Butlerow, A. Formation synthétique d’une substance sucrée. Comptes Rendus Acad. Sci. 53, 145–147 (1861). 13. Ricardo, A., Carrigan, M. A., Olcott, A. N. & Benner, S. A. Borate minerals stabilize ribose. Science 303, 196–196 (2004). 14. Fialho, D. M. et al. Glycosylation of a model proto-RNA nucleobase with nonribose sugars: implications for the prebiotic synthesis of nucleosides. Org. Biomol. Chem. 16, 1263–1271 (2018). 15. Krishnamurthy, R. et al. Pyranosyl‐RNA: base pairing between homochiral oligonucleotide strands of opposite sense of chirality. Angew. Chem. Int. Ed. 35, 1537–1541 (1996). 16. Kim, H. J. et al. Evaporite borate‐containing mineral ensembles make phosphate available and regiospecifically phosphorylate ribonucleosides: borate as a multifaceted problem solver in prebiotic chemistry. Angew. Chem. Int. Ed. 55, 15816–15820 (2016). 17. Li, L. et al. Enhanced nonenzymatic RNA copying with 2-aminoimidazole activated nucleotides. J. Am. Chem. Soc. 139, 1810–1813 (2017). |