Abstract
The applicability of DCCs in a continuous freeze-drying concept based on spin freezing and infrared heating was evaluated. Maximum applicable filling volume was evaluated. Secondly the mechanistic model for the determination of the optimal dynamic infrared heater temperature during primary drying of regular vials during continuous freeze-drying was adapted and validated for DCCs. Finally, since spin frozen DCCs may be more prone to choked flow due to the small neck opening and the large product surface area, it was evaluated if the choked flow constraints in the model could be increased to improve the efficiency of the drying process. The experiments revealed that the maximum allowable filling volume for spin freezing at the current experimental setup was 0.8 ml which is 80% of the maximum filling volume. Applying the mechanistic model for the determination of the optimal dynamic infrared heater temperature during primary drying of the studied DCCs and experimentally verifying this determined infrared heater temperature trajectory resulted in an elegant freeze-dried product without visual signs of collapse. The experimentally determined primary drying time agreed with the one calculated based on the mechanistic model. Choked flow did not occur during the continuous freeze-drying of DCCs containing 3% sucrose or 3% mannitol.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Chemie und Pharmazie > Department für Pharmazie - Zentrum für Pharmaforschung |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 540 Chemie |
ISSN: | 0378-5173 |
Sprache: | Englisch |
Dokumenten ID: | 83590 |
Datum der Veröffentlichung auf Open Access LMU: | 15. Dez. 2021, 15:08 |
Letzte Änderungen: | 15. Dez. 2021, 15:08 |