Abstract
Targeting metabolism through bioactive key metabolites is an upcoming future therapeutic strategy. We questioned how modifying intracellular lipid metabolism could be a possible means for alleviating inflammation. Using a recently developed chemical probe (SH42), we inhibited distal cholesterol biosynthesis through selective inhibition of Delta(24)-dehydrocholesterol reductase (DHCR24). Inhibition of DHCR24 led to an antiinflammatory/proresolving phenotype in a murine peritonitis model. Subsequently, we investigated several omics layers in order to link our phenotypic observations with key metabolic alterations. Lipidomic analysis revealed a significant increase in endogenous polyunsaturated fatty acid (PUFA) biosynthesis. These data integrated with gene expression analysis, revealing increased expression of the desaturase Fads6 and the key proresolving enzyme Alox-12/15. Protein array analysis, as well as immune cell phenotype and functional analysis, substantiated these results confirming the antiinflammatory/proresolving phenotype. Ultimately, lipid mediator (LM) analysis revealed the increased production of bioactive lipids, channeling the observed metabolic alterations into a key class of metabolites known for their capacity to change the inflammatory phenotype.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Chemie und Pharmazie > Department für Pharmazie - Zentrum für Pharmaforschung |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 540 Chemie |
ISSN: | 0027-8424 |
Sprache: | Englisch |
Dokumenten ID: | 83593 |
Datum der Veröffentlichung auf Open Access LMU: | 15. Dez. 2021, 15:08 |
Letzte Änderungen: | 15. Dez. 2021, 15:08 |