ORCID: https://orcid.org/0000-0002-0654-387X; Levin, Johannes; Gordon, Brian A.; Lim, Yen Ying; Masters, Colin L.; Rossor, Martin; Fox, Nick C.; O'Connor, Antoinette; Chhatwal, Jasmeer; Salloway, Stephen; Danek, Adrian; Hassenstab, Jason; Schofield, Peter R.; Morris, John C.; Bateman, Randall J. und Ewers, Michael
(2020):
Predicting sporadic Alzheimer's disease progression via inherited Alzheimer's disease-informed machine-learning.
In: Alzheimer's and Dementia, Bd. 16, Nr. 3: S. 501-511
[PDF, 2MB]

Abstract
Introduction: Developing cross-validated multi-biomarker models for the prediction of the rate of cognitive decline in Alzheimer's disease (AD) is a critical yet unmet clinical challenge. Methods: We applied support vector regression to AD biomarkers derived from cerebrospinal fluid, structural magnetic resonance imaging (MRI), amyloid-PET and fluorodeoxyglucose positron-emission tomography (FDG-PET) to predict rates of cognitive decline. Prediction models were trained in autosomal-dominant Alzheimer's disease (ADAD, n = 121) and subsequently cross-validated in sporadic prodromal AD (n = 216). The sample size needed to detect treatment effects when using model-based risk enrichment was estimated. Results: A model combining all biomarker modalities and established in ADAD predicted the 4-year rate of decline in global cognition (R-2 = 24%) and memory (R-2 = 25%) in sporadic AD. Model-based risk-enrichment reduced the sample size required for detecting simulated intervention effects by 50%-75%. Discussion: Our independently validated machine-learning model predicted cognitive decline in sporadic prodromal AD and may substantially reduce sample size needed in clinical trials in AD.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Medizin
Medizin > Munich Cluster for Systems Neurology (SyNergy) Medizin > Institut für Schlaganfall- und Demenzforschung (ISD) |
Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
URN: | urn:nbn:de:bvb:19-epub-84866-9 |
ISSN: | 1552-5260 |
Sprache: | Englisch |
Dokumenten ID: | 84866 |
Datum der Veröffentlichung auf Open Access LMU: | 25. Jan. 2022, 09:12 |
Letzte Änderungen: | 06. Jun. 2024, 14:37 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 390857198 |