Abstract
Thein vivodetection of dead cells remains a major challenge due to technical hurdles. Here, we present a novel method, where injection of fluorescent milk fat globule-EGF factor 8 protein (MFG-E8)in vivocombined with imaging flow cytometry and deep learning allows the identification of dead cells based on their surface exposure of phosphatidylserine (PS) and other image parameters. A convolutional autoencoder (CAE) was trained on defined pictures and successfully used to identify apoptotic cellsin vivo. However, unexpectedly, these analyses also revealed that the great majority of PS(+)cells were not apoptotic, but rather live cells associated with PS(+)extracellular vesicles (EVs). During acute viral infection apoptotic cells increased slightly, while up to 30% of lymphocytes were decorated with PS(+)EVs of antigen-presenting cell (APC) exosomal origin. The combination of recombinant fluorescent MFG-E8 and the CAE-method will greatly facilitate analyses of cell death and EVsin vivo.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Medizin
Medizin > Munich Cluster for Systems Neurology (SyNergy) |
Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
URN: | urn:nbn:de:bvb:19-epub-86416-1 |
Sprache: | Englisch |
Dokumenten ID: | 86416 |
Datum der Veröffentlichung auf Open Access LMU: | 25. Jan. 2022, 09:19 |
Letzte Änderungen: | 07. Jun. 2024, 11:45 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 390857198 |