In: PLOS One
15(5), e0233262
[PDF, 2MB]
Abstract
Previous unimodal PET and fMRI studies in humans revealed a reproducible vestibular brain activation pattern, but with variations in its weighting and expansiveness. Hybrid studies minimizing methodological variations at baseline conditions are rare and still lacking for task-based designs. Thus, we applied for the first time hybrid 3T PET-MRI scanning (Siemens mMR) in healthy volunteers using galvanic vestibular stimulation (GVS) in healthy volunteers in order to directly compare (H2O)-O-15-PET and BOLD MRI responses. List mode PET acquisition started with the injection of 750 MBq (H2O)-O-15 simultaneously to MRI EPI sequences. Group-level statistical parametric maps were generated for GVS vs. rest contrasts of PET, MR-onset (event-related), and MR-block. All contrasts showed a similar bilateral vestibular activation pattern with remarkable proximity of activation foci. Both BOLD contrasts gave more bilateral wide-spread activation clusters than PET;no area showed contradictory signal responses. PET still confirmed the right-hemispheric lateralization of the vestibular system, whereas BOLD-onset revealed only a tendency. The reciprocal inhibitory visual-vestibular interaction concept was confirmed by PET signal decreases in primary and secondary visual cortices, and BOLD-block decreases in secondary visual areas. In conclusion, MRI activation maps contained a mixture of CBF measured using (H2O)-O-15-PET and additional non-CBF effects, and the activation-deactivation pattern of the BOLD-block appears to be more similar to the (H2O)-O-15-PET than the BOLD-onset.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Medizin
Medizin > Munich Cluster for Systems Neurology (SyNergy) |
Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
URN: | urn:nbn:de:bvb:19-epub-87221-4 |
ISSN: | 1932-6203 |
Sprache: | Englisch |
Dokumenten ID: | 87221 |
Datum der Veröffentlichung auf Open Access LMU: | 25. Jan. 2022, 09:23 |
Letzte Änderungen: | 14. Jun. 2024, 06:47 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 390857198 |