Abstract
We report the temperature evolution of hydrogen bond (HB) chains and rings in Mn5[(PO4)2(PO3(OH))2](HOH)4 to reveal conduction pathways based on difference Fourier maps with neutron- and synchrotron x-ray diffraction data. Localized proton dynamics for the five distinct hydrogen sites were observed and identified in this study. Their temperature evaluation over ten orders of magnitude in time was followed by means of quasielastic neutron scattering, dielectric spectroscopy, and ab initio molecular dynamics. Two out of the five hydrogen sites are geometrically isolated and are not suitable for long-range proton conduction. Nevertheless, the detected dc conductivity points to long-range charge transport at elevated temperatures, which occurs most likely (1) over H4–H4 sites between semihelical HB chains (interchain-exchanges) and (2) by rotations of O1–H1 and site-exchanging H4–O10–O5 groups along each semihelical HB chain (intrachain-exchanges). The latter dynamics freeze into a proton-glass state at low temperatures. Rotational and site-exchanging motions of HOH and OH ligands seem to be facilitated by collective motions of framework polyhedra, which we detected by inelastic neutron scattering.
Item Type: | Journal article |
---|---|
Form of publication: | Publisher's Version |
Faculties: | Geosciences > Department of Earth and Environmental Sciences > Crystallography and Materials Science |
Subjects: | 500 Science > 530 Physics 500 Science > 540 Chemistry 500 Science > 550 Earth sciences and geology |
Language: | English |
Item ID: | 91281 |
Date Deposited: | 08. Mar 2022, 06:09 |
Last Modified: | 08. Mar 2022, 06:09 |