Abstract
Nanocarriers have attracted a huge interest in the last decade as efficient drug delivery systems and diagnostic tools. They enable effective, targeted, controlled delivery of therapeutic molecules while lowering the side effects caused during the treatment. The physicochemical properties of nanoparticles determine their in vivo pharmacokinetics, biodistribution and tolerability. The most analyzed among these physicochemical properties are shape, size, surface charge and porosity and several techniques have been used to characterize these specific properties. These different techniques assess the particles under varying conditions, such as physical state, solvents etc. and as such probe, in addition to the particles themselves, artifacts due to sample preparation or environment during measurement. Here, we discuss the different methods to precisely evaluate these properties, including their advantages or disadvantages. In several cases, there are physical properties that can be evaluated by more than one technique. Different strengths and limitations of each technique complicate the choice of the most suitable method, while often a combinatorial characterization approach is needed.
Dokumententyp: | Buchbeitrag |
---|---|
EU Funded Grant Agreement Number: | 637830 |
EU-Projekte: | Horizon 2020 > ERC Grants > ERC Starting Grant > ERC Grant 637830: Novel asthma therapy - Biocompatible nanoparticles for T cell targeted siRNA delivery as novel asthma therapy |
Publikationsform: | Submitted Version |
Keywords: | nanoparticle characterization, nanoparticles, porosity, shape, size, surface charge |
Fakultät: | Chemie und Pharmazie > Department für Pharmazie - Zentrum für Pharmaforschung |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 500 Naturwissenschaften |
URN: | urn:nbn:de:bvb:19-epub-92011-3 |
ISBN: | 978-3-030-54489-8 |
Ort: | Cham |
Sprache: | Englisch |
Dokumenten ID: | 92011 |
Datum der Veröffentlichung auf Open Access LMU: | 11. Mai 2022, 11:32 |
Letzte Änderungen: | 11. Mai 2022, 11:32 |
Literaturliste: | References [1] B. European Commission, Belgium, Commission Recommendation of 18 October 2011 on the definition of nanomaterial, 2011. https://ec.europa.eu/environment/chemicals/nanotech/faq/definition_en.htm. [2] D.S. Kohane, Microparticles and nanoparticles for drug delivery, Biotechnology and bioengineering 96(2) (2007) 203-9. [3] K. Cho, X. Wang, S. Nie, Z.G. Chen, D.M. Shin, Therapeutic nanoparticles for drug delivery in cancer, Clinical cancer research : an official journal of the American Association for Cancer Research 14(5) (2008) 1310-6. [4] E. Allard, C. Passirani, J.P. Benoit, Convection-enhanced delivery of nanocarriers for the treatment of brain tumors, Biomaterials 30(12) (2009) 2302-18. [5] Y. Xie, N.H. Kim, V. Nadithe, D. Schalk, A. Thakur, A. Kilic, L.G. Lum, D.J.P. Bassett, O.M. Merkel, Targeted delivery of siRNA to activated T cells via transferrin-polyethylenimine (Tf-PEI) as a potential therapy of asthma, Journal of controlled release : official journal of the Controlled Release Society 229 (2016) 120-129. [6] D. Peer, J.M. Karp, S. Hong, O.C. Farokhzad, R. Margalit, R. Langer, Nanocarriers as an emerging platform for cancer therapy, Nature nanotechnology 2(12) (2007) 751-60. [7] T.M. Allen, Ligand-targeted therapeutics in anticancer therapy, Nature reviews. Cancer 2(10) (2002) 750-63. [8] S. Hirn, M. Semmler-Behnke, C. Schleh, A. Wenk, J. Lipka, M. Schäffler, S. Takenaka, W. Möller, G. Schmid, U. Simon, Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration, European journal of pharmaceutics and biopharmaceutics 77(3) (2011) 407-416. [9] X. Huang, L. Li, T. Liu, N. Hao, H. Liu, D. Chen, F. Tang, The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo, ACS nano 5(7) (2011) 5390-5399. [10] Q. Mu, G. Jiang, L. Chen, H. Zhou, D. Fourches, A. Tropsha, B. Yan, Chemical basis of interactions between engineered nanoparticles and biological systems, Chem Rev 114(15) (2014) 7740-81. [11] L. Guo, A. Von Dem Bussche, M. Buechner, A. Yan, A.B. Kane, R.H. Hurt, Adsorption of essential micronutrients by carbon nanotubes and the implications for nanotoxicity testing, Small 4(6) (2008) 721-7. [12] M.P. Desai, V. Labhasetwar, E. Walter, R.J. Levy, G.L. Amidon, The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent, Pharmaceutical research 14(11) (1997) 1568-73. [13] M. Gaumet, A. Vargas, R. Gurny, F. Delie, Nanoparticles for drug delivery: the need for precision in reporting particle size parameters, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V 69(1) (2008) 1-9. [14] F. Alexis, E. Pridgen, L.K. Molnar, O.C. Farokhzad, Factors Affecting the Clearance and Biodistribution of Polymeric Nanoparticles, Molecular Pharmaceutics 5(4) (2008) 505-515. [15] A.S. Hoffman, The origins and evolution of "controlled" drug delivery systems, Journal of controlled release : official journal of the Controlled Release Society 132(3) (2008) 153-63. [16] A. Prokop, J.M. Davidson, Nanovehicular intracellular delivery systems, Journal of pharmaceutical sciences 97(9) (2008) 3518-90. [17] X. Xiong, Y. Wang, W. Zou, J. Duan, Y. Chen, Preparation and Characterization of Magnetic Chitosan Microcapsules, Journal of Chemistry 2013 (2013) 8. [18] D.B. Williams, C.B. Carter, P. Veyssiere, Transmission electron microscopy: a textbook for materials science, MRS Bulletin-Materials Research Society 23(5) (1998) 47. [19] He, Ge, Liu, Wang, Zhang, Synthesis of Cagelike Polymer Microspheres with Hollow Core/Porous Shell Structures by Self-Assembly of Latex Particles at the Emulsion Droplet Interface, Chemistry of Materials 17(24) (2005) 5891-5892. [20] A. Bogner, P.H. Jouneau, G. Thollet, D. Basset, C. Gauthier, A history of scanning electron microscopy developments: towards "wet-STEM" imaging, Micron 38(4) (2007) 390-401. [21] N. Hartl, F. Adams, G. Costabile, L. Isert, M. Doblinger, X. Xiao, R. Liu, O.M. Merkel, The Impact of Nylon-3 Copolymer Composition on the Efficiency of siRNA Delivery to Glioblastoma Cells, Nanomaterials 9(7) (2019). [22] M. Adrian, J. Dubochet, J. Lepault, A.W. McDowall, Cryo-electron microscopy of viruses, Nature 308(5954) (1984) 32-6. [23] N.M. Belliveau, J. Huft, P.J. Lin, S. Chen, A.K. Leung, T.J. Leaver, A.W. Wild, J.B. Lee, R.J. Taylor, Y.K. Tam, C.L. Hansen, P.R. Cullis, Microfluidic Synthesis of Highly Potent Limit-size Lipid Nanoparticles for In Vivo Delivery of siRNA, Molecular therapy. Nucleic acids 1 (2012) e37. [24] C. Bonnaud, C.A. Monnier, D. Demurtas, C. Jud, D. Vanhecke, X. Montet, R. Hovius, M. Lattuada, B. Rothen-Rutishauser, A. Petri-Fink, Insertion of nanoparticle clusters into vesicle bilayers, ACS Nano 8(4) (2014) 3451-60. [25] U. Baxa, Imaging of Liposomes by Transmission Electron Microscopy, Methods in molecular biology 1682 (2018) 73-88. [26] P.P. Wibroe, D. Ahmadvand, M.A. Oghabian, A. Yaghmur, S.M. Moghimi, An integrated assessment of morphology, size, and complement activation of the PEGylated liposomal doxorubicin products Doxil(R), Caelyx(R), DOXOrubicin, and SinaDoxosome, Journal of controlled release : official journal of the Controlled Release Society 221 (2016) 1-8. [27] T.S. Baker, N.H. Olson, S.D. Fuller, Adding the third dimension to virus life cycles: three-dimensional reconstruction of icosahedral viruses from cryo-electron micrographs, Microbiology and molecular biology reviews : MMBR 63(4) (1999) 862-922, table of contents. [28] S. Kler, J.C. Wang, M. Dhason, A. Oppenheim, A. Zlotnick, Scaffold properties are a key determinant of the size and shape of self-assembled virus-derived particles, ACS chemical biology 8(12) (2013) 2753-61. [29] Y. Tian, T. Wang, W. Liu, H.L. Xin, H. Li, Y. Ke, W.M. Shih, O. Gang, Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames, Nature nanotechnology 10(7) (2015) 637-44. [30] T.I. Lobling, J.S. Haataja, C.V. Synatschke, F.H. Schacher, M. Muller, A. Hanisch, A.H. Groschel, A.H. Muller, Hidden structural features of multicompartment micelles revealed by cryogenic transmission electron tomography, ACS Nano 8(11) (2014) 11330-40. [31] G. Binnig, C.F. Quate, C. Gerber, Atomic Force Microscope, Physical Review Letters 56(9) (1986) 930-933. [32] H.J. Kim, S.K. Choi, S.H. Kang, K.H. Oh, Structural phase transitions of Ge2Sb2Te5 cells with TiN electrodes using a homemade W heater tip, Applied Physics Letters 90(8) (2007) 083103. [33] D.R. Lovley, N.S. Malvankar, Seeing is believing: novel imaging techniques help clarify microbial nanowire structure and function, Environmental microbiology 17(7) (2015) 2209-15. [34] P. Xiao, J. Gu, J. Chen, J. Zhang, R. Xing, Y. Han, J. Fu, W. Wang, T. Chen, Micro-contact printing of graphene oxide nanosheets for fabricating patterned polymer brushes, Chemical communications 50(54) (2014) 7103-6. [35] N. Gadegaard, Atomic force microscopy in biology: technology and techniques, Biotechnic & Histochemistry 81(2-3) (2006) 87-97. [36] A. Stylianou, S.V. Kontomaris, C. Grant, E. Alexandratou, Atomic Force Microscopy on Biological Materials Related to Pathological Conditions, Scanning 2019 (2019) 8452851. [37] F.M. Etzler, J. Drelich, Chapter 6 - Atomic Force Microscopy for Characterization of Surfaces, Particles, and Their Interactions, in: R. Kohli, K.L. Mittal (Eds.), Developments in Surface Contamination and Cleaning, William Andrew Publishing, Oxford, 2012, pp. 307-331. [38] H. Zhou, Q. Xu, S. Li, Y. Zheng, X. Wu, C. Gu, Y. Chen, J. Zhong, Dynamic enhancement in adhesion forces of truncated and nanosphere tips on substrates, RSC Advances 5(111) (2015) 91633-91639. [39] J. Zhong, W. Zheng, L. Huang, Y. Hong, L. Wang, Y. Qiu, Y. Sha, PrP106-126 amide causes the semi-penetrated poration in the supported lipid bilayers, Biochimica et biophysica acta 1768(6) (2007) 1420-9. [40] N. Shamitko-Klingensmith, J. Legleiter, Investigation of temperature induced mechanical changes in supported bilayers by variants of tapping mode atomic force microscopy, Scanning 37(1) (2015) 23-35. [41] J.H. Hafner, C.L. Cheung, A.T. Woolley, C.M. Lieber, Structural and functional imaging with carbon nanotube AFM probes, Progress in biophysics and molecular biology 77(1) (2001) 73-110. [42] S.K. Jones, A. Sarkar, D.P. Feldmann, P. Hoffmann, O.M. Merkel, Revisiting the value of competition assays in folate receptor-mediated drug delivery, Biomaterials 138 (2017) 35-45. [43] S. Upadhyay, K. Parekh, B. Pandey, Influence of crystallite size on the magnetic properties of Fe3O4 nanoparticles, Journal of Alloys and Compounds 678 (2016) 478-485. [44] M.-H. Liao, C.-H. Hsu, D.-H. Chen, Preparation and properties of amorphous titania-coated zinc oxide nanoparticles, Journal of Solid State Chemistry 179(7) (2006) 2020-2026. [45] B. Ingham, X-ray scattering characterisation of nanoparticles, Crystallography Reviews 21(4) (2015) 229-303. [46] W. Wang, X. Chen, Q. Cai, G. Mo, L.S. Jiang, K. Zhang, Z.J. Chen, Z.H. Wu, W. Pan, In situ SAXS study on size changes of platinum nanoparticles with temperature, Eur. Phys. J. B 65(1) (2008) 57-64. [47] A. Sharma, C. Cornejo, J. Mihalic, A. Geyh, D.E. Bordelon, P. Korangath, F. Westphal, C. Gruettner, R. Ivkov, Physical characterization and in vivo organ distribution of coated iron oxide nanoparticles, Scientific Reports 8(1) (2018) 4916. [48] E.J. Guidelli, A.P. Ramos, M.E. Zaniquelli, P. Nicolucci, O. Baffa, Synthesis and characterization of silver/alanine nanocomposites for radiation detection in medical applications: the influence of particle size on the detection properties, Nanoscale 4(9) (2012) 2884-93. [49] I.E. Borissevitch, G.G. Parra, V.E. Zagidullin, E.P. Lukashev, P.P. Knox, V.Z. Paschenko, A.B. Rubin, Cooperative effects in CdSe/ZnS-PEGOH quantum dot luminescence quenching by a water soluble porphyrin, Journal of Luminescence 134 (2013) 83-87. [50] M. Yokoyama, A. Satoh, Y. Sakurai, T. Okano, Y. Matsumura, T. Kakizoe, K. Kataoka, Incorporation of water-insoluble anticancer drug into polymeric micelles and control of their particle size, Journal of Controlled Release 55(2) (1998) 219-229. [51] M. Zaru, C. Sinico, A. De Logu, C. Caddeo, F. Lai, M.L. Manca, A.M. Fadda, Rifampicin-loaded liposomes for the passive targeting to alveolar macrophages: in vitro and in vivo evaluation, Journal of Liposome Research 19(1) (2009) 68-76. [52] W. Huang, C. Zhang, Tuning the Size of Poly(lactic-co-glycolic Acid) (PLGA) Nanoparticles Fabricated by Nanoprecipitation, Biotechnology journal 13(1) (2018). [53] S. Badaire, P. Poulin, M. Maugey, C. Zakri, In situ measurements of nanotube dimensions in suspensions by depolarized dynamic light scattering, Langmuir 20(24) (2004) 10367-10370. [54] D. Kozak, W. Anderson, R. Vogel, S. Chen, F. Antaw, M. Trau, Simultaneous size and zeta-potential measurements of individual nanoparticles in dispersion using size-tunable pore sensors, ACS Nano 6(8) (2012) 6990-7. [55] D.C. Golibersuch, Observation of aspherical particle rotation in Poiseuille flow via the resistance pulse technique. I. Application to human erythrocytes, Biophysical journal 13(3) (1973) 265-80. [56] M. Platt, G.R. Willmott, G.U. Lee, Resistive pulse sensing of analyte-induced multicomponent rod aggregation using tunable pores, Small 8(15) (2012) 2436-44. [57] D.A. Holden, G. Hendrickson, L.A. Lyon, H.S. White, Resistive Pulse Analysis of Microgel Deformation During Nanopore Translocation, The journal of physical chemistry. C, Nanomaterials and interfaces 115(7) (2011) 2999-3004. [58] T. Ito, L. Sun, M.A. Bevan, R.M. Crooks, Comparison of nanoparticle size and electrophoretic mobility measurements using a carbon-nanotube-based coulter counter, dynamic light scattering, transmission electron microscopy, and phase analysis light scattering, Langmuir 20(16) (2004) 6940-5. [59] T. Ito, L. Sun, R.M. Crooks, Simultaneous determination of the size and surface charge of individual nanoparticles using a carbon nanotube-based Coulter counter, Analytical chemistry 75(10) (2003) 2399-406. [60] S.J. Sowerby, M.F. Broom, G.B. Petersen, Dynamically resizable nanometre-scale apertures for molecular sensing, Sensors and Actuators B: Chemical 123(1) (2007) 325-330. [61] A.K. Pal, I. Aalaei, S. Gadde, P. Gaines, D. Schmidt, P. Demokritou, D. Bello, High resolution characterization of engineered nanomaterial dispersions in complex media using tunable resistive pulse sensing technology, ACS Nano 8(9) (2014) 9003-15. [62] V. Filipe, A. Hawe, W. Jiskoot, Critical evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates, Pharmaceutical research 27(5) (2010) 796-810. [63] E.C. Cho, J. Xie, P.A. Wurm, Y. Xia, Understanding the Role of Surface Charges in Cellular Adsorption versus Internalization by Selectively Removing Gold Nanoparticles on the Cell Surface with a I2/KI Etchant, Nano Letters 9(3) (2009) 1080-1084. [64] K. Xiao, Y. Li, J. Luo, J.S. Lee, W. Xiao, A.M. Gonik, R.G. Agarwal, K.S. Lam, The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles, Biomaterials 32(13) (2011) 3435-46. [65] K. Saha, S.T. Kim, B. Yan, O.R. Miranda, F.S. Alfonso, D. Shlosman, V.M. Rotello, Surface functionality of nanoparticles determines cellular uptake mechanisms in mammalian cells, Small 9(2) (2013) 300-305. [66] D.H. Jo, J.H. Kim, T.G. Lee, J.H. Kim, Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases, Nanomedicine: Nanotechnology, Biology and Medicine 11(7) (2015) 1603-1611. [67] S.G. Elci, Y. Jiang, B. Yan, S.T. Kim, K. Saha, D.F. Moyano, G. Yesilbag Tonga, L.C. Jackson, V.M. Rotello, R.W. Vachet, Surface Charge Controls the Suborgan Biodistributions of Gold Nanoparticles, ACS Nano 10(5) (2016) 5536-5542. [68] D.F. Moyano, M. Goldsmith, D.J. Solfiell, D. Landesman-Milo, O.R. Miranda, D. Peer, V.M. Rotello, Nanoparticle Hydrophobicity Dictates Immune Response, Journal of the American Chemical Society 134(9) (2012) 3965-3967. [69] C.C. Fleischer, C.K. Payne, Nanoparticle–Cell Interactions: Molecular Structure of the Protein Corona and Cellular Outcomes, Accounts of Chemical Research 47(8) (2014) 2651-2659. [70] S. Mourdikoudis, R.M. Pallares, N.T.K. Thanh, Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties, Nanoscale 10(27) (2018) 12871-12934. [71] R.W. DeBlois, C.P. Bean, R.K. Wesley, Electrokinetic measurements with submicron particles and pores by the resistive pulse technique, Journal of colloid and interface science 61(2) (1977) 323-335. [72] E.L. Blundell, R. Vogel, M. Platt, Particle-by-Particle Charge Analysis of DNA-Modified Nanoparticles Using Tunable Resistive Pulse Sensing, Langmuir 32(4) (2016) 1082-90. [73] R. Vogel, F.A. Coumans, R.G. Maltesen, A.N. Boing, K.E. Bonnington, M.L. Broekman, M.F. Broom, E.I. Buzas, G. Christiansen, N. Hajji, S.R. Kristensen, M.J. Kuehn, S.M. Lund, S.L. Maas, R. Nieuwland, X. Osteikoetxea, R. Schnoor, B.J. Scicluna, M. Shambrook, J. de Vrij, S.I. Mann, A.F. Hill, S. Pedersen, A standardized method to determine the concentration of extracellular vesicles using tunable resistive pulse sensing, Journal of extracellular vesicles 5 (2016) 31242. [74] R. Vogel, A.K. Pal, S. Jambhrunkar, P. Patel, S.S. Thakur, E. Reátegui, H.S. Parekh, P. Saá, A. Stassinopoulos, M.F. Broom, High-Resolution Single Particle Zeta Potential Characterisation of Biological Nanoparticles using Tunable Resistive Pulse Sensing, Scientific Reports 7(1) (2017) 17479. [75] A. Sikora, D. Bartczak, D. Geißler, V. Kestens, G. Roebben, Y. Ramaye, Z. Varga, M. Palmai, A.G. Shard, H. Goenaga-Infante, C. Minelli, A systematic comparison of different techniques to determine the zeta potential of silica nanoparticles in biological medium, Analytical Methods 7(23) (2015) 9835-9843. [76] J. Salonen, A.M. Kaukonen, J. Hirvonen, V.P. Lehto, Mesoporous silicon in drug delivery applications, Journal of pharmaceutical sciences 97(2) (2008) 632-53. [77] M. Vallet-Regi, Nanostructured mesoporous silica matrices in nanomedicine, Journal of internal medicine 267(1) (2010) 22-43. [78] H.A. Santos, L.M. Bimbo, V.P. Lehto, A.J. Airaksinen, J. Salonen, J. Hirvonen, Multifunctional porous silicon for therapeutic drug delivery and imaging, Current drug discovery technologies 8(3) (2011) 228-49. [79] S.P. Hudson, R.F. Padera, R. Langer, D.S. Kohane, The biocompatibility of mesoporous silicates, Biomaterials 29(30) (2008) 4045-55. [80] H. Giesche, Mercury Porosimetry: A General (Practical) Overview, Particle & Particle Systems Characterization 23(1) (2006) 9-19. [81] D.M. Weir, L.A. Herzenberg, C. Blackwell, L.A. Herzenberg, Handbook of experimental immunology, Blackwell Scientific Publications, Oxford; Boston, 1986. [82] C. Berteau, O. Filipe-Santos, T. Wang, H.E. Rojas, C. Granger, F. Schwarzenbach, Evaluation of the impact of viscosity, injection volume, and injection flow rate on subcutaneous injection tolerance, Medical devices 8 (2015) 473-84. [83] I.M. Mahbubul, R. Saidur, M.A. Amalina, Latest developments on the viscosity of nanofluids, International Journal of Heat and Mass Transfer 55(4) (2012) 874-885. [84] V.Y. Rudyak, S.L. Krasnolutskii, Dependence of the viscosity of nanofluids on nanoparticle size and material, Physics Letters A 378(26) (2014) 1845-1849. [85] S.D. Hudson, P. Sarangapani, J.A. Pathak, K.B. Migler, A microliter capillary rheometer for characterization of protein solutions, Journal of pharmaceutical sciences 104(2) (2015) 678-85. [86] A.O. Ogah, J.N. Afiukwa, A.A. Nduji, Characterization and Comparison of Rheological Properties of Agro Fiber Filled High-Density Polyethylene Bio-Composites, Open Journal of Polymer Chemistry Vol.04No.01 (2014) 8. [87] H.A. Barnes, J.F. Hutton, K. Walters, An introduction to rheology, Elsevier : Distributors for the U.S. and Canada, Elsevier Science Pub. Co., Amsterdam ; New York, 1989. |