
Abstract
Static word embeddings that represent words by a single vector cannot capture the variability of word meaning in different linguistic and extralinguistic contexts. Building on prior work on contextualized and dynamic word embeddings, we introduce dynamic contextualized word embeddings that represent words as a function of both linguistic and extralinguistic context. Based on a pretrained language model (PLM), dynamic contextualized word embeddings model time and social space jointly, which makes them attractive for a range of NLP tasks involving semantic variability. We highlight potential application scenarios by means of qualitative and quantitative analyses on four English datasets.
Item Type: | Conference or Workshop Item (Paper) |
---|---|
EU Funded Grant Agreement Number: | 740516 |
EU Projects: | Horizon 2020 > ERC Grants > ERC Advanced Grant > ERC Grant 740516: NonSequeToR - Non-sequence models for tokenization replacement |
Research Centers: | Center for Information and Language Processing (CIS) |
Subjects: | 000 Computer science, information and general works > 000 Computer science, knowledge, and systems 400 Language > 400 Language 400 Language > 410 Linguistics |
URN: | urn:nbn:de:bvb:19-epub-92187-2 |
Language: | English |
Item ID: | 92187 |
Date Deposited: | 27. May 2022, 08:24 |
Last Modified: | 27. May 2022, 08:24 |