Logo Logo
Hilfe
Hilfe
Switch Language to English

Schick, Timo und Schütze, Hinrich (Juni 2021): It’s Not Just Size That Matters: Small Language Models Are Also Few-Shot Learners. Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Online, June 2021. Toutanova, Kristina (Hrsg.): In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Stroudsburg, PA: Association for Computational Linguistics. S. 2339-2352 [PDF, 475kB]

[thumbnail of 2021.naacl-main.185.pdf]
Vorschau
Download (475kB)

Abstract

When scaled to hundreds of billions of parameters, pretrained language models such as GPT-3 (Brown et al., 2020) achieve remarkable few-shot performance. However, enormous amounts of compute are required for training and applying such big models, resulting in a large carbon footprint and making it difficult for researchers and practitioners to use them. We show that performance similar to GPT-3 can be obtained with language models that are much “greener” in that their parameter count is several orders of magnitude smaller. This is achieved by converting textual inputs into cloze questions that contain a task description, combined with gradient-based optimization; exploiting unlabeled data gives further improvements. We identify key factors required for successful natural language understanding with small language models.

Dokument bearbeiten Dokument bearbeiten