Abstract
Augmented reality (AR) using head-mounted displays (HMDs) is a powerful tool for user navigation. Existing approaches usually display navigational cues that are constantly visible (always-on). This limits real-world application, as visual cues can mask safety-critical objects. To address this challenge, we develop a context-adaptive system for safe navigation in AR using machine learning. Specifically, our system utilizes a neural network, trained to predict when to display visual cues during AR-based navigation. For this, we conducted two user studies. In User Study 1, we recorded training data from an AR HMD. In User Study 2, we compared our context-adaptive system to an always-on system. We find that our context-adaptive system enables task completion speeds on a par with the always-on system, promotes user autonomy, and facilitates safety through reduced visual noise. Overall, participants expressed their preference for our context-adaptive system in an industrial workplace setting.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Keywords: | Artificial Intelligence, AI, Künstliche Intelligenz, KI |
Fakultät: | Betriebswirtschaft > Institute of Artificial Intelligence (AI) in Management |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 000 Informatik, Wissen, Systeme |
URN: | urn:nbn:de:bvb:19-epub-94958-1 |
ISSN: | 1044-7318 |
Bemerkung: | Published online: 22 Sep 2022 |
Sprache: | Englisch |
Dokumenten ID: | 94958 |
Datum der Veröffentlichung auf Open Access LMU: | 08. Mrz. 2023, 14:00 |
Letzte Änderungen: | 18. Jun. 2024, 11:14 |