Abstract
We present a systematic investigation on an improved variant of the N-acyl-Pictet-Spengler condensation for the synthesis of 1-benzyltetrahydroisoquinolines, based on our recently published synthesis of N-methylcoclaurine, exemplified by the total synthe-ses of 10 alkaloids in racemic form. Major advantages are a) using omega-methoxystyrenes as convenient alternatives to arylacetalde-hydes, and b) using the ethoxycarbonyl residue for both activating the arylethylamine precursors for the cyclization reaction, and, as a significant extension, also as protective group for phenolic residues. After ring closure, the ethoxycarbonyl-protected phenols are deprotected simultaneously with the further processing of the carbamate group, either following route A (lithium alanate reduction) to give N-methylated phenolic products, or following route B (treatment with excess methyllithium) to give the corresponding alka-loids with free N-H function. This dual use of the ethoxycarbonyl group shortens the synthetic routes to hydroxylated 1-benzyl-tetrahydroisoquinolines significantly. Not surprisingly, these ten alkaloids did not show noteworthy effects on TPC2 cation channels and the tumor cell line VCR-R CEM, and did not exhibit P-glycoprotein blocking activity. But due to their free phenolic groups they can serve as valuable intermediates for novel derivatives addressing all of these targets, based on previous evidence for structure-activity relationships in this chemotype.
Item Type: | Journal article |
---|---|
Faculties: | Chemistry and Pharmacy > Department of Pharmacy |
Subjects: | 500 Science > 540 Chemistry |
ISSN: | 1860-5397 |
Language: | English |
Item ID: | 99479 |
Date Deposited: | 05. Jun 2023 15:31 |
Last Modified: | 05. Jun 2023 15:31 |