Logo Logo
Exportieren als [RSS feed] RSS 1.0 [RSS2 feed] RSS 2.0
Gruppiert nach: Dokumententyp | Veröffentlichungsdatum
Anzahl der Publikationen: 13

Zeitschriftenartikel

Hofmann, Valentin; Schütze, Hinrich und Pierrehumbert, Janet B. (2020): A Graph Auto-encoder Model of Derivational Morphology. In: 58th Annual Meeting of the Association for Computational Linguistics (ACL 2020): S. 1127-1138

Konferenzbeitrag

Weissweiler, Leonie; Hofmann, Valentin; Köksal, Abdullatif und Schütze, Hinrich (Dezember 2022): The Better Your Syntax, the Better Your Semantics? Probing Pretrained Language Models for the English Comparative Correlative. EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022. Che, Wanxiang und Shutova, Ekaterina (Hrsg.): In: Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, Stroudsburg, PA: Association for Computational Linguistics (ACL). S. 10859-10882 [PDF, 635kB]

Hofmann, Valentin; Dong, Xiaowen; Pierrehumbert, Janet und Schütze, Hinrich (Juli 2022): Modeling Ideological Salience and Framing in Polarized Online Groups with Graph Neural Networks and Structured Sparsity. NAACL 2022, Seattle, United States, July 2022. Carpuat, Marine; de Marneffe, Marie-Catherine und Meza Ruiz, Ivan Vladimir (Hrsg.): In: Findings of the Association for Computational Linguistics: NAACL 2022, Stroudsburg, PA: Association for Computational Linguistics. S. 536-550 [PDF, 3MB]

Hofmann, Valentin; Pierrehumbert, Janet und Schütze, Hinrich (Juli 2022): Unsupervised Detection of Contextualized Embedding Bias with Application to Ideology. 39 th International Conference on Machine Learning, Baltimore, Maryland, USA, July 2022. Chaudhuri, Kamalika; Jegelka, Stefanie; Song, Le; Szepesvari, Csaba; Niu, Gang und Sabato, Sivan (Hrsg.): In: Proceedings of the 39 th International Conference on Machine Learning, Baltimore, Maryland, USA, PMLR 162, 202, Bd. 162 S. 8796-8810 [PDF, 32MB]

Hofmann, Valentin; Schütze, Hinrich und Pierrehumbert, Janet (Juni 2022): The Reddit Politosphere: A Large-Scale Text and NetworkResource of Online Political Discourse. ICWSM 2022, Atlanta, Georgia, USA and online, June 6–9, 2022. Proceedings of the International AAAI Conference on Web and Social Media. Bd. 16 S. 1259-1267 [PDF, 6MB]

Hofmann, Valentin; Schütze, Hinrich und Pierrehumbert, Janet B. (Mai 2022): An Embarrassingly Simple Method to Mitigate Undesirable Properties of Pretrained Language Model Tokenizers. 60th Annual Meeting of the Association for Computational Linguistics, Dublin, Ireland, May 22-27, 2022. Muresan, Smarandakov; Nakov, Preslav und Villavicencio, Aline (Hrsg.): In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Stroudsburg, PA: Association for Computational Linguistics. S. 385-393 [PDF, 480kB]

Weissweiler, Leonie; Hofmann, Valentin; Sabet, Masoud Jalili und Schütze, Hinrich (Mai 2022): CaMEL: Case Marker Extraction without Labels. Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Dublin, Ireland, May 2022. Muresan, Smaranda; Nakov, Preslav und Villavicencio, Aline (Hrsg.): In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Stroudsburg, PA: Association for Computational Linguistics. S. 5506-5516 [PDF, 380kB]

Hofmann, Valentin; Pierrehumbert, Janet B. und Schütze, Hinrich (August 2021): Dynamic Contextualized Word Embeddings. 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Online, August 2021. Zong, Chengqing; Xia, Fei; Li, Wenjie und Navigli, Roberto (Hrsg.): In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), Association for Computational Linguistics. S. 6970-6984 [PDF, 4MB]

Hofmann, Valentin; Pierrehumbert, Janet B. und Schütze, Hinrich (August 2021): Superbizarre Is Not Superb: Derivational Morphology Improves BERT’s Interpretation of Complex Words. 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Online, August 2021. Zong, Chengqing; Xia, Fei; Li, Wenjie und Navigli, Roberto (Hrsg.): In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), S. 3594-3608 [PDF, 1MB]

Hofmann, Valentin; Pierrehumbert, Janet und Schütze, Hinrich (2021): Superbizarre Is Not Superb: Derivational Morphology Improves BERT’s Interpretation of Complex Words. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Online, August 1–6, 2021. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), Association for Computational Linguistics (ACL). S. 3594-3608

Hofmann, Valentin; Pierrehumbert, Janet und Schütze, Hinrich (November 2020): DagoBERT: Generating Derivational Morphology with a Pretrained Language Model. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, Online, 16. – 20. November 2020. [PDF, 2MB]

Konferenz

Hofmann, Valentin; Schütze, Hinrich und Pierrehumbert, Janet (6. Juli 2020): A Graph Auto-encoder Model of Derivational Morphology. , July 6 – 8, 2020, Seattle, USA [PDF, 1MB]

Hofmann, Valentin; Pierrehumbert, Janet und Schütze, Hinrich (6. Juli 2020): Predicting the Growth of Morphological Families from Social and Linguistic Factors. , July 6 – 8, 2020, Seattle, USA [PDF, 2MB]

Diese Liste wurde am Sat Nov 23 19:35:02 2024 CET erstellt.