Abstract
Human mitochondria are complex and highly dynamic biological systems, comprised of over a thousand parts and evolved to fully integrate into the specialized intracellular signaling networks and metabolic requirements of each cell and organ. Over the last two decades, several complementary, top-down computational and experimental approaches have been developed to identify, characterize and modulate the human mitochondrial system, demonstrating the power of integrating classical reductionist and discovery-driven analyses in order to deorphanize hitherto unknown molecular components of mitochondrial machineries and pathways. To this goal, systematic, multiomics-based surveys of proteome composition, protein networks, and phenotype-to-pathway associations at the tissue, cell and organellar level have been largely exploited to predict the full complement of mitochondrial proteins and their functional interactions, therefore catalyzing data-driven hypotheses. Collectively, these multidisciplinary and integrative research approaches hold the potential to propel our understanding of mitochondrial biology and provide a systems-level framework to unraveling mitochondriamediated and disease-spanning pathomechanisms.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Medizin > Munich Cluster for Systems Neurology (SyNergy) |
Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
URN: | urn:nbn:de:bvb:19-epub-117617-2 |
Sprache: | Englisch |
Dokumenten ID: | 117617 |
Datum der Veröffentlichung auf Open Access LMU: | 07. Jun. 2024, 15:50 |
Letzte Änderungen: | 11. Jun. 2024, 14:09 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 390857198 |