Abstract
Recently, various intermediate layer distillation (ILD) objectives have been shown to improve compression of BERT models via Knowledge Distillation (KD). However, a comprehensive evaluation of the objectives in both task-specific and task-agnostic settings is lacking. To the best of our knowledge, this is the first work comprehensively evaluating distillation objectives in both settings. We show that attention transfer gives the best performance overall. We also study the impact of layer choice when initializing the student from the teacher layers, finding a significant impact on the performance in task-specific distillation. For vanilla KD and hidden states transfer, initialisation with lower layers of the teacher gives a considerable improvement over higher layers, especially on the task of QNLI (up to an absolute percentage change of 17.8 in accuracy). Attention transfer behaves consistently under different initialisation settings. We release our code as an efficient transformer-based model distillation framework for further studies.
Dokumententyp: | Konferenzbeitrag (Paper) |
---|---|
Fakultät: | Sprach- und Literaturwissenschaften > Department 2 |
Fakultätsübergreifende Einrichtungen: | Centrum für Informations- und Sprachverarbeitung (CIS) |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik
400 Sprache > 410 Linguistik |
URN: | urn:nbn:de:bvb:19-epub-121900-0 |
ISBN: | 978-1-959429-71-5 |
Ort: | Stroudsburg, PA |
Sprache: | Englisch |
Dokumenten ID: | 121900 |
Datum der Veröffentlichung auf Open Access LMU: | 29. Okt. 2024 12:28 |
Letzte Änderungen: | 29. Okt. 2024 12:28 |