Logo Logo
Hilfe
Hilfe
Switch Language to English

Sagi, Gil (29. Mai 2017): Extensionality and logicality. In: Synthese [PDF, 193kB]

[thumbnail of extensionality_logicality_preprint.pdf]
Vorschau
Eingereichte Version
Download (193kB)

Abstract

Tarski characterized logical notions as invariant under permutations of the domain. The outcome, according to Tarski, is that our logic, which is commonly said to be a logic of extension rather than intension, is not even a logic of extension - it is a logic of cardinality (or, more accurately, of "isomorphism type"). In this paper, I make this idea precise. We look at a scale inspired by Ruth Barcan Marcus of various levels of meaning: extensions, intensions and hyperintensions. On this scale, the lower the level of meaning, the more coarse-grained and less "intensional" it is. I propose to extend this scale to accommodate a level of meaning appropriate for logic. Thus, below the level of extension, we will have a more coarse-grained level of form. I employ a semantic conception of form, adopted from Sher, where forms are features of things "in the world''. Each expression in the language embodies a form, and by the definition we give, forms will be invariant under permutations and thus Tarskian logical notions. I then define the logical terms of a language as those terms whose extension can be determined by their form. Logicality will be shown to be a lower level analogue of rigidity. Using Barcan Marcus's principles of explicit and implicit extensionality, we are able to characterize purely logical languages as "sub-extensional", namely, as concerned only with form, and we thus obtain a wider perspective on both logicality and extensionality.

Dokument bearbeiten Dokument bearbeiten