Abstract
Various stability indicating techniques find application in the early stage development of novel therapeutic protein candidates. Some of these techniques are used to select formulation conditions that provide high protein physical stability. Such approach is highly dependent on the reliability of the stability indicating technique used. In this work, we present a formulation case study in which we evaluate the ability of differential scanning fluorimetry (DSF) and isothermal chemical denaturation (ICD) to predict the physical stability of a model monoclonal antibody during accelerated stability studies. First, we show that a thermal denaturation technique like DSF can provide misleading physical stability rankings due to buffer specific pH shifts during heating. Next, we demonstrate how isothermal chemical denaturation can be used to tackle the above-mentioned challenge. Subsequently, we show that the concentration dependence of the Gibbs free energy of unfolding determined by ICD provides better predictions for the protein physical stability in comparison to the often-used Tm (melting temperature of the protein determined with DSF) and Cm (concentration of denaturant needed to unfold 50% of the protein determined with ICD). Finally, we give a suggestion for a rational approach which includes a combination of DSF and ICD to obtain accurate and reliable protein physical stability ranking in different formulations.
Dokumententyp: | Zeitschriftenartikel |
---|---|
EU Funded Grant Agreement Number: | 675074 |
EU-Projekte: | Horizon 2020 > Marie Skłodowska Curie Actions > Marie Skłodowska-Curie Innovative Training Networks > 675074: PIPPI - Protein-excipient Interactions and Protein-Protein Interactions in formulation |
Publikationsform: | Postprint |
Keywords: | Protein formulation; Thermal denaturation; Isothermal chemical denaturation; Monoclonal antibody; Differential scanning fluorimetry; |
Fakultät: | Chemie und Pharmazie > Department für Pharmazie - Zentrum für Pharmaforschung |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 570 Biowissenschaften; Biologie |
URN: | urn:nbn:de:bvb:19-epub-61771-6 |
ISSN: | 0939-6411 |
Sprache: | Englisch |
Dokumenten ID: | 61771 |
Datum der Veröffentlichung auf Open Access LMU: | 07. Mai 2019, 06:33 |
Letzte Änderungen: | 04. Nov. 2020, 13:39 |
Literaturliste: | [1] D.S. Dimitrov, Therapeutic Proteins, in: V. Voynov, J.A. Caravella (Eds.), Ther. Proteins Methods Protoc., Humana Press, Totowa, NJ, (2012) 1-26. doi:10.1007/978-1-61779-921-1_1. [2] D.S. Dimitrov, Therapeutic antibodies, vaccines and antibodyomes, MAbs. 2 (2010) 347-356. doi:10.4161/mabs.2.3.11779. [3] J.G. Elvin, R.G. Couston, C.F. Van Der Walle, Therapeutic antibodies: Market considerations, disease targets and bioprocessing, Int. J. Pharm. 440 (2013) 83-98. doi:10.1016/j.ijpharm.2011.12.039. [4] L. DeFrancesco, Drug pipeline Q4 2015, Nat Biotech. 34 (2016) 128. http://dx.doi.org/10.1038/nbt.3484. [5] W. Wang, D.N. Kelner, Correlation of rFVIII inactivation with aggregation in solution, Pharm. Res. 20 (2003) 693-700. doi:10.1023/A:1023271405005. [6] L. Runkel, W. Meier, R.B. Pepinsky, M. Karpusas, A. Whitty, K. Kimball, M. Brickelmaier, C. Muldowney, W. Jones, S.E. Goelz, Structural and Functional Differences Between Glycosylated and Non-glycosylated Forms of Human Interferon-$β$ (IFN-$β$), Pharm. Res. 15 (1998) 641- 649. doi:10.1023/A:1011974512425. [7] E.M. Moussa, J.P. Panchal, B.S. Moorthy, J.S. Blum, M.K. Joubert, L.O. Narhi, E.M. Topp, Immunogenicity of Therapeutic Protein Aggregates, J. Pharm. Sci. 105 (2017) 417-430. doi:10.1016/j.xphs.2015.11.002. [8] S. Sethu, K. Govindappa, M. Alhaidari, M. Pirmohamed, K. Park, J. Sathish, Immunogenicity to Biologics: Mechanisms, Prediction and Reduction, Arch. Immunol. Ther. Exp. (Warsz). 60 (2012) 331-344. doi:10.1007/s00005-012-0189-7. [9] K.D. Ratanji, J.P. Derrick, R.J. Dearman, I. Kimber, Immunogenicity of therapeutic proteins: Influence of aggregation, J. Immunotoxicol. 11 (2014) 99-109. doi:10.3109/1547691X.2013.821564. [10] C. ICH, Q 6 B Specifications: Test Procedures and Acceptance Criteria for Biotechnological/Biological Products, Eur. Med. Agency. (1999) 1-17. [11] A. Hawe, M. Wiggenhorn, M. van de Weert, J.H.O. Garbe, H. Mahler, W. Jiskoot, Forced degradation of therapeutic proteins, J. Pharm. Sci. 101 (2012) 895-913. doi:10.1002/jps.22812. [12] M.A.H. Capelle, R. Gurny, T. Arvinte, High throughput screening of protein formulation stability: Practical considerations, Eur. J. Pharm. Biopharm. 65 (2007) 131-148. doi:10.1016/j.ejpb.2006.09.009. [13] F. He, S. Hogan, R.F. Latypov, L.O. Narhi, V.I. Razinkov, High throughput thermostability screening of monoclonal antibody formulations, J. Pharm. Sci. 99 (2010) 1707-1720. doi:10.1002/jps.21955. [14] D.S. Goldberg, S.M. Bishop, A.U. Shah, H.A. Sathish, Formulation development of therapeutic monoclonal antibodies using high-throughput fluorescence and static light scattering techniques: Role of conformational and colloidal stability, J. Pharm. Sci. 100 (2011) 1306- 1315. doi:10.1002/jps.22371. [15] D.S. Goldberg, R. Lewus, R. Esfandiary, D. Farkas, N. Mody, K. Day, P. Mallik, M.B. Tracka, S.K. Sealey, H.S. Samra, Utility of High Throughput Screening Techniques to Predict Stability of Monoclonal Antibody Formulations During Early Stage Development, J. Pharm. Sci. 106 (2017) 1971-1977. doi:10.1016/j.xphs.2017.04.039. [16] R. Chaudhuri, Y. Cheng, C.R. Middaugh, D.B. Volkin, High-Throughput Biophysical Analysis of Protein Therapeutics to Examine Interrelationships Between Aggregate Formation and Conformational Stability, AAPS J. 16 (2014) 48-64. doi:10.1208/s12248-013-9539-6. [17] N.R. Maddux, V. Iyer, W. Cheng, A.M.K. Youssef, S.B. Joshi, D.B. Volkin, J.P. Ralston, G. Winter, C. Russell Middaugh, High throughput prediction of the long-term stability of pharmaceutical macromolecules from short-term multi-instrument spectroscopic data, J. Pharm. Sci. 103 (2014) 828-839. doi:10.1002/jps.23849. [18] C.J. Roberts, Therapeutic protein aggregation: mechanisms, design, and control, Trends Biotechnol. 32 (2014) 372-380. doi:http://dx.doi.org/10.1016/j.tibtech.2014.05.005. [19] E.Y. Chi, S. Krishnan, T.W. Randolph, J.F. Carpenter, Physical Stability of Proteins in Aqueous Solution: Mechanism and Driving Forces in Nonnative Protein Aggregation, 20 (2003) 1325 - 1336. https://doi.org/10.1023/A:1025771421906 [20] W. Wang, S. Nema, D. Teagarden, Protein aggregation-Pathways and influencing factors, Int. J. Pharm. 390 (2010) 89-99. doi:10.1016/j.ijpharm.2010.02.025. [21] M.C. Manning, D.K. Chou, B.M. Murphy, R.W. Payne, D.S. Katayama, Stability of protein pharmaceuticals: An update, Pharm. Res. 27 (2010) 544-575. doi:10.1007/s11095-009-00456. [22] C.M. Johnson, Differential scanning calorimetry as a tool for protein folding and stability, Arch. Biochem. Biophys. 531 (2013) 100-109. doi:http://dx.doi.org/10.1016/j.abb.2012.09.008. [23] L. Burton, R. Gandhi, G. Duke, M. Paborji, Use of Microcalorimetry and Its Correlation with Size Exclusion Chromatography for Rapid Screening of the Physical Stability of Large Pharmaceutical Proteins in Solution, Pharm. Dev. Technol. 12 (2007) 265-273. doi:10.1080/10837450701212610. [24] M.L. Brader, T. Estey, S. Bai, R.W. Alston, K.K. Lucas, S. Lantz, P. Landsman, K.M. Maloney, Examination of thermal unfolding and aggregation profiles of a series of developable therapeutic monoclonal antibodies, Mol. Pharm. 12 (2015) 1005-1017. doi:10.1021/mp400666b. [25] V. Kumar, N. Dixit, L. Zhou, W. Fraunhofer, Impact of short range hydrophobic interactions and long range electrostatic forces on the aggregation kinetics of a monoclonal antibody and a dual-variable domain immunoglobulin at low and high concentrations, Int. J. Pharm. 421 (2011) 82-93. doi:10.1016/j.ijpharm.2011.09.017. [26] A.M.K. Youssef, G. Winter, A critical evaluation of microcalorimetry as a predictive tool for long term stability of liquid protein formulations: Granulocyte Colony Stimulating Factor (GCSF), Eur. J. Pharm. Biopharm. 84 (2013) 145-155. doi:10.1016/j.ejpb.2012.12.017. [27] U.B. Ericsson, B.M. Hallberg, G.T. DeTitta, N. Dekker, P. Nordlund, Thermofluor-based high throughput stability optimization of proteins for structural studies, Anal. Biochem. 357 (2006) 289-298. doi:http://dx.doi.org/10.1016/j.ab.2006.07.027. [28] R. Wanner, D. Breitsprecher, S. Duhr, P. Baaske, G. Winter, Thermo-Optical Protein Characterization for Straightforward Preformulation Development, J. Pharm. Sci. 106 (2017) 2955-2958. http://dx.doi.org/10.1016/j.xphs.2017.06.002 [29] T.A. Menzen, Temperature-Induced Unfolding, Aggregation, and Interaction of Therapeutic Monoclonal Antibodies, (2014). PhD thesis. LMU Munich. urn:nbn:de:bvb:19-175200 [30] A.C. King, M. Woods, W. Liu, Z. Lu, D. Gill, M.R.H. Krebs, High-throughput measurement, correlation analysis, and machine-learning predictions for pH and thermal stabilities of Pfizer generated antibodies, Protein Sci. 20 (2011) 1546-1557. doi:10.1002/pro.680. [31] D. Breitsprecher, N. Glücklich, A. Hawe, T. Menzen, Thermal Unfolding of Antibodies Comparison of nanoDSF and µDSC for thermal stability assessment during biopharmaceutical formulation development, Appl. Note. NT-PR-006 (2016). [32] E. Freire, A. Schön, B.M. Hutchins, R.K. Brown, Chemical denaturation as a tool in the formulation optimization of biologics, Drug Discov. Today. 18 (2013) 1007-1013. doi:10.1016/j.drudis.2013.06.005. [33] J.M. Sanchez-Ruiz, Theoretical analysis of Lumry-Eyring models in differential scanning calorimetry, Biophys. J. 61 (1992) 921-935. doi:10.1016/S0006-3495(92)81899-4. [34] C.J. Roberts, T.K. Das, E. Sahin, Predicting solution aggregation rates for therapeutic proteins: Approaches and challenges, Int. J. Pharm. 418 (2011) 318-333. doi:10.1016/j.ijpharm.2011.03.064. [35] H. Nagai, K. Kuwabara, G. Carta, Temperature dependence of the dissociation constants of several amino acids, J. Chem. Eng. Data. 53 (2008) 619-627. doi:10.1021/je700067a. [36] J.C. Reijenga, L.G. Gagliardi, E. Kenndler, Temperature dependence of acidity constants, a tool to affect separation selectivity in capillary electrophoresis, J. Chromatogr. A. 1155 (2007) 142- 145. doi:10.1016/j.chroma.2006.09.084. [37] T.J. Zbacnik, R.E. Holcomb, D.S. Katayama, B.M. Murphy, R.W. Payne, R.C. Coccaro, G.J. Evans, J.E. Matsuura, C.S. Henry, M.C. Manning, Role of Buffers in Protein Formulations, J. Pharm. Sci. 106 (2017) 713-733. doi:10.1016/j.xphs.2016.11.014. [38] C.N. Pace, K.L. Shaw, Linear extrapolation method of analyzing solvent denaturation curves., Proteins. Suppl 4 (2000) 1-7. doi:10.1002/1097-0134(2000)41:4+<1::AID-PROT10>3.0.CO;2-2 [pii]. [39] M. Niklasson, C. Andresen, S. Helander, M.G.L. Roth, A. Zimdahl Kahlin, M. Lindqvist Appell, L.- G. Mårtensson, P. Lundström, Robust and convenient analysis of protein thermal and chemical stability, Protein Sci. 24 (2015) 2055-2062. doi:10.1002/pro.2809. [40] K.L. Lazar, T.W. Patapoff, V.K. Sharma, Cold denaturation of monoclonal antibodies, MAbs. 2 (2010) 42-52. doi:10.4161/mabs.2.1.10787. [41] A. Schön, B.R. Clarkson, R. Siles, P. Ross, R.K. Brown, E. Freire, Denatured state aggregation parameters derived from concentration dependence of protein stability, Anal. Biochem. 488 (2015) 45-50. doi:10.1016/j.ab.2015.07.013. [42] B.R. Clarkson, A. Sch??n, E. Freire, Conformational stability and self-association equilibrium in biologics, Drug Discov. Today. 21 (2016) 342-347. doi:10.1016/j.drudis.2015.11.007. [43] J.M. Rizzo, S. Shi, Y. Li, A. Semple, J.J. Esposito, S. Yu, D. Richardson, V. Antochshuk, M. Shameem, Application of a high-throughput relative chemical stability assay to screen therapeutic protein formulations by assessment of conformational stability and correlation to aggregation propensity, J. Pharm. Sci. 104 (2015) 1632-1640. doi:10.1002/jps.24408. [44] T. Menzen, W. Friess, Temperature-Ramped Studies on the Aggregation , Unfolding , and Interaction of a Therapeutic Monoclonal Antibody, J. Pharm. Sci. 103 (2014) 445-455. doi:10.1002/jps.23827. [45] F. Menzen, Tim, Wolfgang, High-Throughput Melting-Temperature Analysis of a Monoclonal Antibody by Differential Scanning Fluorimetry in the Presence of Surfactants, J. Pharm. Sci. 102 (2013) 415-428. doi:10.1002/jps.23405 [46] C. Kalonia, V. Toprani, R. Toth, N. Wahome, I. Gabel, C.R. Middaugh, D.B. Volkin, Effects of Protein Conformation, Apparent Solubility, and Protein-Protein Interactions on the Rates and Mechanisms of Aggregation for an IgG1Monoclonal Antibody, J. Phys. Chem. B. 120 (2016) 7062-7075. doi:10.1021/acs.jpcb.6b03878. [47] H. Fukada, K. Takahashi, Enthalpy and heat capacity changes for the proton dissociation of various buffer components in 0.1 M potassium chloride, Proteins Struct. Funct. Genet. 33 (1998) 159-166. doi:10.1002/(SICI)1097-0134(19981101)33:2<159::AID-PROT2>3.0.CO;2-E. [48] R.N. Goldberg, N. Kishore, R.M. Lennen, Thermodynamic quantities for the ionization reaction of buffers., J. Phys. Chem. Ref. Data. 31 (2002) 231-370. [49] H. Liu, C. Chumsae, G. Gaza-Bulseco, E.R. Goedken, Domain-level stability of an antibody monitored by reduction, differential alkylation, and mass spectrometry analysis, Anal. Biochem. 400 (2010) 244-250. doi:10.1016/j.ab.2010.02.004. [50] J. Vlasak, R. Ionescu, Fragmentation of monoclonal antibodies Fragmentation of monoclonal antibodies, mAbs 3 , 862 (2017). doi:10.4161/mabs.3.3.15608. |