References: | Wang W. Advanced protein formulations. Protein Sci [Internet] 2015 [cited 2018 Jan 18]; 24:1031–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25858529
2. Chi EY. Excipients Used in Biotechnology Products. John Wiley & Sons, Inc.; 2017.
3. Svilenov H, Winter G. Rapid sample-saving biophysical characterisation and long-term storage stability of liquid interferon alpha2a formulations: Is there a correlation? Int J Pharm [Internet] 2019; 562:42–50. Available from: https://doi.org/10.1016/j.ijpharm.2019.03.025
4. Ratanji KD, Derrick JP, Dearman RJ, Kimber I. Immunogenicity of therapeutic proteins: Influence of aggregation. J Immunotoxicol [Internet] 2014 [cited 2018 Feb 28]; 11:99–109. Available from: http://www.tandfonline.com/doi/full/10.3109/1547691X.2013.821564
5. Koo OMY. Pharmaceutical excipients: properties, functionality, and applications in research and industry. Hoboken, New Jersey, USA: John Wiley & Sons, Inc.; 2017.
6. Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS. Stability of Protein Pharmaceuticals: An Update. 2010 [cited 2018 Jan 28]; Available from: http://static.springer.com/sgw/documents/1345446/application/pdf/PHARMRES_Stability+of+Protein+Pharmaceuticals.pdf
7. Bohacek RS, Mcmartin C, Guida WC. The Art and Practice of Structure-Based Drug Design : A Molecular Modeling Perspective. 1996; 16:3–50.
8. Kamerzell TJ, Esfandiary R, Joshi SB, Middaugh CR, Volkin DB. Protein-excipient interactions: Mechanisms and biophysical characterization applied to protein formulation development. Adv Drug Deliv Rev [Internet] 2011; 63:1118–59. Available from: http://dx.doi.org/10.1016/j.addr.2011.07.006
9. Paulette M. Gaynor, Richard Bonnette, Edmundo Garcia, Jr., Linda S. Kahl, Luis G. Valerio J. FDA’s Approach to the GRAS Provision: A History of Processes [Internet]. 2006; Available from: https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/ucm094040.htm
10. Ecker DM, Jones SD, Levine HL. The therapeutic monoclonal antibody market. MAbs [Internet] 2015; 7:9–14. Available from: http://www.tandfonline.com/doi/full/10.4161/19420862.2015.989042
11. Raybould MIJ, Marks C, Krawczyk K, Taddese B, Nowak J, Lewis AP, Bujotzek A, Shi J, Deane CM. Five computational developability guidelines for therapeutic antibody profiling. Proc Natl Acad Sci [Internet] 2019; :201810576. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1810576116
12. Seeliger D, Schulz P, Litzenburger T, Spitz J, Hoerer S, Blech M, Enenkel B, Studts JM, Garidel P, Karow AR. Boosting antibody developability through rational sequence optimization. MAbs 2015; 7:505–15.
13. Zambrano R, Jamroz M, Szczasiuk A, Pujols J, Kmiecik S, Ventura S. AGGRESCAN3D (A3D): Server for prediction of aggregation properties of protein structures. Nucleic Acids Res 2015; 43:W306–13.
14. Kranz JK, Schalk-Hihi C. Protein Thermal Shifts to Identify Low Molecular Weight Fragments. Methods Enzymol [Internet] 2011 [cited 2018 Oct 16]; 493:277–98. Available from: https://www-sciencedirect-com.emedien.ub.uni-muenchen.de/science/article/pii/B978012381274200011X?via%3Dihub
15. Svilenov H, Markoja U, Winter G. Isothermal chemical denaturation as a complementary tool to overcome limitations of thermal differential scanning fluorimetry in predicting physical stability of protein formulations. Eur J Pharm Biopharm [Internet] 2018 [cited 2018 Jun 13]; 125:106–13. Available from: https://www.sciencedirect.com/science/article/pii/S093964111731127X
16. Svilenov H, Winter G. The ReFOLD assay for protein formulation studies and prediction of protein aggregation during long-term storage. Eur J Pharm Biopharm [Internet] 2019; 137:131–9. Available from: https://www.sciencedirect.com/science/article/pii/S0939641118315364?dgcid=author
17. Svilenov H, Gentiluomo L, Friess W, Roessner D, Winter G. A New Approach to Study the Physical Stability of Monoclonal Antibody Formulations—Dilution From a Denaturant. J Pharm Sci [Internet] 2018; 107:3007–13. Available from: https://doi.org/10.1016/j.xphs.2018.08.004
18. Leach AR, Gillet VJ. An Introduction to Chemoinformatics [Internet]. [cited 2018 Dec 28]. Available from: http://www.acad.bg/ebook/cheminformatics/Leach_An Introduction to Chemoinformatics Rev Ed.pdf
19. Sakuratani Y, Kasai K, Noguchi Y, Yamada J. Comparison of predictivities of log P calculation models based on experimental data for 134 simple organic compounds. QSAR Comb Sci 2007; 26:109–16.
20. Polton DJ. Installation and operational experiences with MACCS (Molecular Access System). Online Rev [Internet] 1982; 6:235–42. Available from: http://www.emeraldinsight.com/doi/10.1108/eb024099
21. Welford SM, Lynch MF, Barnard JM. Towards simplified access to chemical structure information in the patent literature. J Inf Sci [Internet] 1983; 6:3–10. Available from: http://journals.sagepub.com/doi/10.1177/016555158300600102
22. Myint K-Z, Wang L, Tong Q, Xie XQ. Molecular fingerprint-based artificial neural networks QSAR for ligand biological activity predictions. Mol Pharm 2012; 9:2912–23.
23. Oyetayo OO, Méndez-Lucio O, Bender A, Kiefer H. Diversity selection, screening and quantitative structure–activity relationships of osmolyte-like additive effects on the thermal stability of a monoclonal antibody. Eur J Pharm Sci [Internet] 2017; 97:151–7. Available from: http://dx.doi.org/10.1016/j.ejps.2016.11.016
24. Pantoliano MW, Bone RF, Rhind AW, Salemme FR. Microplate Thermal Shift Assay Apparatus for Ligand Development and multi-variable protein chemistry optimization. 2004;
25. Niesen FH, Berglund H, Vedadi M. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc 2007; 2:2212–21.
26. Borysko P, Moroz YS, Vasylchenko O V., Hurmach V V., Starodubtseva A, Stefanishena N, Nesteruk K, Zozulya S, Kondratov IS, Grygorenko OO. Straightforward hit identification approach in fragment-based discovery of bromodomain-containing protein 4 (BRD4) inhibitors. Bioorganic Med Chem [Internet] 2018; 26:3399–405. Available from: https://doi.org/10.1016/j.bmc.2018.05.010
27. Sule S V., Cheung JK, Antochshuk V, Bhalla AS, Narasimhan C, Blaisdell S, Shameem M, Tessier PM. Solution pH that minimizes self-association of three monoclonal antibodies is strongly dependent on ionic strength. Mol Pharm 2012; 9:744–51.
28. Dunn WJ. QSAR approaches to predicting toxicity. Toxicol Lett 1988; 43:277–83.
29. Jones E, Oliphant E, Peterson P, Others A. SciPy: Open Source Scientific Tools for Python. 2001;
30. Newville M, Stensitzki T, Allen DB, Ingargiola A. LMFIT: Non-Linear Least-Square Minimization and Curve-Fitting for Python. 2014 [cited 2019 Jun 4]; Available from: https://doi.org/10.5281/zenodo.11813#.XPYEU5_8WOs.mendeley |
---|