Abstract
We implemented several multilabel classification algorithms in the machine learning package mlr. The implemented methods are binary relevance, classifier chains, nested stacking, dependent binary relevance and stacking, which can be used with any base learner that is accessible in mlr. Moreover, there is access to the multilabel classification versions of randomForestSRC and rFerns. All these methods can be easily compared by different implemented multilabel performance measures and resampling methods in the standardized mlr framework. In a benchmark experiment with several multilabel datasets, the performance of the different methods is evaluated.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Medizin
Psychologie und Pädagogik > Department Psychologie |
Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit
100 Philosophie und Psychologie > 150 Psychologie |
ISSN: | 2073-4859 |
Sprache: | Englisch |
Dokumenten ID: | 49958 |
Datum der Veröffentlichung auf Open Access LMU: | 14. Jun. 2018, 09:42 |
Letzte Änderungen: | 14. Jun. 2018, 09:42 |