Abstract
Optical coherence tomography (OCT) is used for non- invasive diagnosis of diabetic macular edema assessing the retinal layers. In this paper, we propose a new fully convolutional deep architecture, termed ReLayNet, for end-to-end segmentation of retinal layers and fluid masses in eye OCT scans. ReLayNet uses a contracting path of convolutional blocks (encoders) to learn a hierarchy of contextual features, followed by an expansive path of convolutional blocks (decoders) for semantic segmentation. ReLayNet is trained to optimize a joint loss function comprising of weighted logistic regression and Dice overlap loss. The framework is validated on a publicly available benchmark dataset with comparisons against five state-of-the-art segmentation methods including two deep learning based approaches to substantiate its effectiveness. (C) 2017 Optical Society of America
| Dokumententyp: | Zeitschriftenartikel |
|---|---|
| Fakultät: | Psychologie und Pädagogik > Department Psychologie |
| Themengebiete: | 100 Philosophie und Psychologie > 150 Psychologie |
| ISSN: | 2156-7085 |
| Sprache: | Englisch |
| Dokumenten ID: | 53248 |
| Datum der Veröffentlichung auf Open Access LMU: | 14. Jun. 2018 09:52 |
| Letzte Änderungen: | 04. Nov. 2020 13:32 |
