Logo Logo
Switch Language to German
Nistor, Nicolae; Dascalu, Mihai; Serafin, Yvonne; Trausan-Matu, Stefan (2018): Automated dialog analysis to predict blogger community response to newcomer inquiries. In: Computers in Human Behavior, Vol. 89: pp. 349-354
Full text not available from 'Open Access LMU'.


Informal learning in online knowledge building communities (OKBCs) often starts with online academic help seeking, and with visitor inquiries on specific topics. In such a context, learning presupposes adequate OKBC response. Employing a social learning analytics approach based on natural language processing and Bakhtin's theory of dialogism, this study aims to predict blogger OKBC response. Manipulating the blog topic (well-defined vs. ill-defined) and the visitor inquiry format (off-topic vs. on-topic), a field experiment with a 2 x 2 factorial design was conducted on a sample of N = 68 blogger communities with a total of 25,303 members. For the entire sample, the community response was influenced only by the inquiry format. In a separate examination of the experimental groups, however, this remained true only for the well-defined topic, whereas for the ill-defined topic the community response only depended on the previously established dialog quality. The findings suggest identification criteria for responsive communities, which can support newcomer integration in OKBCs and, from a larger perspective, the use of OKBCs as components of formal learning environments.