Abstract
The increasing usage of new technologies implies changes for personality research. First, human behavior becomes measurable by digital data, and second, digital manifestations to some extent replace conventional behavior in the analog world. This offers the opportunity to investigate personality traits by means of digital footprints. In this context, the investigation of the personality trait sensation seeking attracted our attention as objective behavioral correlates have been missing so far. By collecting behavioral markers (e.g., communication or app usage) via Android smartphones, we examined whether self-reported sensation seeking scores can be reliably predicted. Overall, 260 subjects participated in our 30-day real-life data logging study. Using a machine learning approach, we evaluated cross-validated model fit based on how accurate sensation seeking scores can be predicted in unseen samples. Our findings highlight the potential of mobile sensing techniques in personality research and show exemplarily how prediction approaches can help to foster an increased understanding of human behavior.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Informatik
Psychologie und Pädagogik > Department Psychologie |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik
100 Philosophie und Psychologie > 150 Psychologie |
ISSN: | 2190-8370 |
Sprache: | Englisch |
Dokumenten ID: | 66417 |
Datum der Veröffentlichung auf Open Access LMU: | 19. Jul. 2019, 12:19 |
Letzte Änderungen: | 13. Aug. 2024, 12:56 |