Logo Logo
Help
Contact
Switch Language to German
Schödel, Ramona; Au, Quay; Völkel, Sarah Theres; Lehmann, Florian; Becker, Daniela; Bühner, Markus; Bischl, Bernd; Hussmann, Heinrich; Stachl, Clemens (2018): Digital Footprints of Sensation Seeking A Traditional Concept in the Big Data Era. In: Zeitschrift für Psychologie-Journal of Psychology, Vol. 226, No. 4: pp. 232-245
Full text not available from 'Open Access LMU'.

Abstract

The increasing usage of new technologies implies changes for personality research. First, human behavior becomes measurable by digital data, and second, digital manifestations to some extent replace conventional behavior in the analog world. This offers the opportunity to investigate personality traits by means of digital footprints. In this context, the investigation of the personality trait sensation seeking attracted our attention as objective behavioral correlates have been missing so far. By collecting behavioral markers (e.g., communication or app usage) via Android smartphones, we examined whether self-reported sensation seeking scores can be reliably predicted. Overall, 260 subjects participated in our 30-day real-life data logging study. Using a machine learning approach, we evaluated cross-validated model fit based on how accurate sensation seeking scores can be predicted in unseen samples. Our findings highlight the potential of mobile sensing techniques in personality research and show exemplarily how prediction approaches can help to foster an increased understanding of human behavior.