Abstract
Limitations in the ability to temporarily represent information in visual working memory (VWM) are crucial for visual cognition. Whether VWM processing is dependent on an object’s saliency (i.e., how much it stands out) has been neglected in VWM research. Therefore, we developed a novel VWM task that allows direct control over saliency. In three experiments with this task (on 10, 31, and 60 adults, respectively), we consistently found that VWM performance is strongly and parametrically influenced by saliency and that both an object’s relative saliency (compared with concurrently presented objects) and absolute saliency influence VWM processing. We also demonstrated that this effect is indeed due to bottom-up saliency rather than differential fit between each object and the top-down attentional template. A simple computational model assuming that VWM performance is determined by the weighted sum of absolute and relative saliency accounts well for the observed data patterns.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Publikationsform: | Publisher's Version |
Keywords: | visual short-term memory; priority map; attention; visual search; visual perception; open data; open materials; preregistered |
Fakultät: | Psychologie und Pädagogik > Department Psychologie > Allgemeine und Experimentelle Psychologie |
Fakultätsübergreifende Einrichtungen: | Graduate School of Systemic Neurosciences (GSN)
Munich Center for Neurosciences – Brain & Mind |
Themengebiete: | 100 Philosophie und Psychologie > 150 Psychologie |
URN: | urn:nbn:de:bvb:19-epub-75608-7 |
ISSN: | 0956-7976 |
Sprache: | Englisch |
Dokumenten ID: | 75608 |
Datum der Veröffentlichung auf Open Access LMU: | 22. Apr. 2021, 06:41 |
Letzte Änderungen: | 06. Dez. 2021, 12:25 |
Literaturliste: | Alvarez, G. A., Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15(2), 106–111. https://doi.org/10/b88gs7 Alvarez, G. A., Cavanagh, P. (2008). Visual short-term memory operates more efficiently on boundary features than on surface features. Perception & Psychophysics, 70(2), 346–364. https://doi.org/10/dbs6k7 Awh, E., Belopolsky, A. V., Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8), 437–443. https://doi.org/10/f34nps Bundesen, C., Habekost, T., Kyllingsbæk, S. (2011). A neural theory of visual attention and short-term memory (NTVA). Neuropsychologia, 49(6), 1446–1457. https://doi.org/10/b8863z Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87–114. https://doi.org/10/ddq83h Duncan, J., Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96(3), 433–458. https://doi.org/10/ck4p2t Emrich, S. M., Lockhart, H. A., Al-Aidroos, N. (2017). Attention mediates the flexible allocation of visual working memory resources. Journal of Experimental Psychology: Human Perception and Performance, 43(7), 1454–1465. https://doi.org/10/gbn3xj Fecteau, J., Munoz, D. (2006). Salience, relevance, and firing: A priority map for target selection. Trends in Cognitive Sciences, 10(8), 382–390. https://doi.org/10/fb66m9 Fukuda, K., Vogel, E., Mayr, U., Awh, E. (2010). Quantity, not quality: The relationship between fluid intelligence and working memory capacity. Psychonomic Bulletin & Review, 17(5), 673–679. https://doi.org/10.3758/17.5.673 Geng, J. J., Witkowski, P. (2019). Template-to-distractor distinctiveness regulates visual search efficiency. Current Opinion in Psychology, 29, 119–125. https://doi.org/10/gg5vtp Hollingworth, A. (2008). Visual memory for natural scenes. In Luck, S. J., Hollingworth, A. (Eds.), Visual memory (pp. 123–162). Oxford University Press. | Crossref Klink, P. C., Jeurissen, D., Theeuwes, J., Denys, D., Roelfsema, P. R. (2017). Working memory accuracy for multiple targets is driven by reward expectation and stimulus contrast with different time-courses. Scientific Reports, 7(1), Article 9082. https://doi.org/10/gbtwp7 Knops, A., Piazza, M., Sengupta, R., Eger, E., Melcher, D. (2014). A shared, flexible neural map architecture reflects capacity limits in both visual short-term memory and enumeration. The Journal of Neuroscience, 34(30), 9857–9866. https://doi.org/10/f6fskg Li, Z. (2002). A saliency map in primary visual cortex. Trends in Cognitive Sciences, 6(1), 9–16. https://doi.org/10/bjs32m Liesefeld, A. M., Liesefeld, H. R., Zimmer, H. D. (2014). Intercommunication between prefrontal and posterior brain regions for protecting visual working memory from distractor interference. Psychological Science, 25(2), 325–333. https://doi.org/10/f5344z Liesefeld, H. R., Liesefeld, A. M., Pollmann, S., Müller, H. J. (2018). Biasing allocations of attention via selective weighting of saliency signals: Behavioral and neuroimaging evidence for the dimension-weighting account. In Hodgson, T. (Ed.), Processes of visuospatial attention and working memory (Vol. 41, pp. 87–113). Springer International Publishing. https://doi.org/10/dc5q Liesefeld, H. R., Liesefeld, A. M., Sauseng, P., Jacob, S. N., Müller, H. J. (2020). How visual working memory handles distraction: Cognitive mechanisms and electrophysiological correlates. Visual Cognition, 28(5–8), 372–387. https://doi.org/10/gg5vsv Liesefeld, H. R., Liesefeld, A. M., Töllner, T., Müller, H. J. (2017). Attentional capture in visual search: Capture and post-capture dynamics revealed by EEG. NeuroImage, 156, 166–173. https://doi.org/10/gbsjqj Liesefeld, H. R., Moran, R., Usher, M., Müller, H. J., Zehetleitner, M. (2016). Search efficiency as a function of target saliency: The transition from inefficient to efficient search and beyond. Journal of Experimental Psychology: Human Perception and Performance, 42, 821–836. https://doi.org/10/ggbnjc Liesefeld, H. R., Müller, H. J. (2019a). Current directions in visual working memory research: An introduction and emerging insights. British Journal of Psychology, 110(2), 193–206. https://doi.org/10/gfvm2p Liesefeld, H. R., Müller, H. J. (2019b). Distractor handling via dimension weighting. Current Opinion in Psychology, 29, 160–167. https://doi.org/10/ggbnjd Liesefeld, H. R., Müller, H. J. (2020). Modulations of saliency signals at two hierarchical levels of priority computation revealed by spatial statistical distractor learning. Journal of Experimental Psychology: General. Advance online publication. https://doi.org/10.1037/xge0000970 Luck, S. J., Vogel, E. K. (2013). Visual working memory capacity: From psychophysics and neurobiology to individual differences. Trends in Cognitive Sciences, 17(8), 391–400. https://doi.org/10/39v Ma, W. J. (2018). Problematic usage of the Zhang and Luck mixture model. bioRxiv. https://doi.org/10/ggbpq3 Ma, W. J., Husain, M., Bays, P. M. (2014). Changing concepts of working memory. Nature Neuroscience, 17(3), 347–356. https://doi.org/10/gd8cbs Moran, R., Zehetleitner, M., Liesefeld, H. R., Müller, H. J., Usher, M. (2016). Serial vs. parallel models of attention in visual search: Accounting for benchmark RT-distributions. Psychonomic Bulletin & Review, 23(5), 1300–1315. https://doi.org/10/gbgdk6 Nothdurft, H.-C. (1993). The role of features in preattentive vision: Comparison of orientation, motion and color cues. Vision Research, 33(14), 1937–1958. https://doi.org/10/d6fw5n Oberauer, K., Lin, H.-Y. (2017). An interference model of visual working memory. Psychological Review, 124(1), 21–59. https://doi.org/10/f9mhb2 Olivers, C. N. L., Peters, J., Houtkamp, R., Roelfsema, P. R. (2011). Different states in visual working memory: When it guides attention and when it does not. Trends in Cognitive Sciences, 15(7), 327–334. https://doi.org/10/fcfxg6 Rajsic, J., Sun, S. Z., Huxtable, L., Pratt, J., Ferber, S. (2016). Pop-out and pop-in: Visual working memory advantages for unique items. Psychonomic Bulletin & Review, 23(6), 1787–1793. https://doi.org/10/f9hf36 Santangelo, V. (2015). Forced to remember: When memory is biased by salient information. Behavioural Brain Research, 283, 1–10. https://doi.org/10/f67dgp Sauter, M., Hanning, N. M., Liesefeld, H. R., Müller, H. J. (2021). Post-capture processes contribute to statistical learning of distractor locations in visual search. Cortex, 135, 108–126. https://doi.org/10.1016/j.cortex.2020.11.016 Schönbrodt, F. D., Wagenmakers, E.-J. (2018). Bayes factor design analysis: Planning for compelling evidence. Psychonomic Bulletin & Review, 25(1), 128–142. https://doi.org/10/gcsk2r Sewell, D. K., Lilburn, S. D., Smith, P. L. (2014). An information capacity limitation of visual short-term memory. Journal of Experimental Psychology: Human Perception and Performance, 40(6), 2214–2242. https://doi.org/10/gg5fn7 Souza, A. S., Oberauer, K. (2016). In search of the focus of attention in working memory: 13 years of the retro-cue effect. Attention, Perception, & Psychophysics, 78(7), 1839–1860. https://doi.org/10/f83nvs Vogel, E. K., McCollough, A. W., Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(7067), 500–503. https://doi.org/10/drbpg5 Vogel, E. K., Woodman, G. F., Luck, S. J. (2006). The time course of consolidation in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 32(6), 1436–1451. https://doi.org/10/c2vrp7 Wolfe, J. M. (2021). Guided Search 6.0: An updated model of visual search. Psychonomic Bulletin & Review. Advance online publication. https://doi.org/10.3758/s13423-020-01859-9 Wolfe, J. M., Horowitz, T. S. (2017). Five factors that guide attention in visual search. Nature Human Behaviour, 1(3), Article 0058. https://doi.org/10/gftcnc Zhang, W., Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453(7192), 233–235. https://doi.org/10/c693sk |