Logo Logo
Switch Language to German

Pasov, Iulia; Dascălu, Mihai; Nistor, Nicolae ORCID logoORCID: https://orcid.org/0000-0002-9956-1670 and Trăușan-Matu, Ștefan ORCID logoORCID: https://orcid.org/0000-0001-8082-8497 (2020): Prediction of Newcomer Integration in Online Knowledge Building Communities Using Time Series Analyses. In: Rehm, Matthias; Saldien, Jelle and Manca, Stefania (eds.) : Project and Design Literacy as Cornerstones of Smart Education. Singapore: Springer. pp. 153-160

Full text not available from 'Open Access LMU'.


In smart learning ecosystems, online communities act as informal learning environments in which members share their interests, challenges, and knowledge on a specific topic. The life span of such communities depends on sociability and usability, and therefore also on the addition and successful integration of newcomers. This study focuses on the automated classification of blog communities into integrative and non-integrative based on features derived from time series analyses applied to the distribution of contributions in time and of participants' pauses within the community. The generated features can be used to support learners with insights on which communities should be targeted in order to maximize their chance of integration. Our study is focused on 20 communities which were classified with an 85% accuracy into integrative and non-integrative. For educational research, our findings provide a starting point to follow up investigations on the impact of pauses in learning processes or learners' behavior.

Actions (login required)

View Item View Item