Logo Logo
Hilfe
Hilfe
Switch Language to English

Fürstenberg, Maurice ORCID logoORCID: https://orcid.org/0009-0001-1090-9299 (Juni 2025): KI-Feedback auf dem Prüfstand. Eine explorative Untersuchung maschineller Rückmeldungen zu Schüler:innentexten. In: Leseräume, Bd. 11, Nr. 12: S. 1-5

Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

Der Beitrag untersucht explorativ, ob ein didaktisch modelliertes generatives Sprachmodell in der Lage ist, inhaltlich zutreffende Rückmeldungen zu Schüler:innentexten zu erzeugen. Analysiert wurden qualitative Feedbacks der KI‐Anwendung fiete.ai zu 17 argumentativen Texten einer 9. Klasse an einem bayerischen Gymnasium. Die maschinellen Rückmeldungen wurden dabei direkt an die jeweiligen Texte rückgebunden und anhand vorgegebener sieben Feedbackkriterien beurteilt. Die Befunde zeigen, dass die KI prinzipiell korrekte inhaltliche Hinweise geben kann; allerdings traten Defizite in der internen Konsistenz der Bewertungen sowie in der präzisen Verortung der Kritikstellen innerhalb der Texte auf. Diese Schwächen führten bei den Lernenden zu Vertrauensproblemen gegenüber dem maschinellen Feedback. Insgesamt liefert die Studie erste empirische Hinweise für Potenziale und Grenzen KI-basierter Feedbacksysteme im Deutschunterricht und hebt zugleich den Bedarf an weiterführender Forschung zur Zuverlässigkeit solcher Systeme hervor.

Dokument bearbeiten Dokument bearbeiten