Abstract
A significant problem that assessments of scientific reasoning face at the level of higher education is the question of domain generality, that is, whether a test will produce biased results for students from different domains. This study applied three recently developed methods of analyzing differential item functioning (DIF) to evaluate the domain generality assumption of a common scientific reasoning test. Additionally, we evaluated the usefulness of these new, tree- and lasso-based, methods to analyze DIF and compared them with methods based on classical test theory. We gave the scientific reasoning test to 507 university students majoring in physics, biology, or medicine. All three DIF analysis methods indicated a domain bias present in about one-third of the items, mostly benefiting biology students. We did not find this bias by using methods based on classical test theory. Those methods indicated instead that all items were easier for physics students compared to biology students. Thus, the tree- and lasso-based methods provide a clear added value to test evaluation. Taken together, our analyses indicate that the scientific reasoning test is neither entirely domain-general, nor entirely domain-specific. We advise against using it in high-stakes situations involving domain comparisons.
Item Type: | Journal article |
---|---|
Faculties: | Psychology and Education Science > Department Psychology > Education and Educational Psychology |
Subjects: | 100 Philosophy and Psychology > 150 Psychology 300 Social sciences > 370 Education |
ISSN: | 1015-5759; 2151-2426 |
Language: | English |
Item ID: | 84295 |
Date Deposited: | 22. Dec 2021, 16:17 |
Last Modified: | 17. Aug 2023, 14:30 |